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Preamble

The Higgs boson machine learning challenge (HiggsML or Challenge in short) has been set up
to promote collaboration between high energy physicists and data scientists. The ATLAS experi-
ment at CERN provided simulated data used by physicists to optimize the analysis of the Higgs
boson. The Challenge is organized by a small group of ATLAS physicists and data scientists. It is
hosted by Kaggle at https://www.kaggle.com/c/higgs-boson. This document provides
technical background for the Challenge; reading and understanding it is not necessary to partic-
ipate in the Challenge, but it is probably useful. No prior knowledge of high energy physics is
required. All information on how to participate in the Challenge is available on the Kaggle web
site.

https://www.kaggle.com/c/higgs-boson


Contents

1 Introduction 3
1.1 The detector and the analysis pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 The goal of the Challenge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 The structure of the document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 The formal problem 4

3 Physics background 6
3.1 Proton collisions and detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 The physics goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3 The data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 The statistical model 9
4.1 Statistical treatment of the measurement . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2 The median discovery significance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5 Conclusion 11

A Special relativity 12
A.1 Momentum, mass, and energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
A.2 Invariant mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
A.3 Other useful formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

B The detailed description of the features 14

2



1 Introduction

The ATLAS experiment and the CMS experiment recently claimed the discovery of the Higgs bo-
son [1, 2]. The discovery was acknowledged by the 2013 Nobel prize in physics given to François
Englert and Peter Higgs. This particle was theorized almost 50 years ago to have the role of giv-
ing mass to other elementary particles. It is the final ingredient of the Standard Model of particle
physics, ruling subatomic particles and forces. The experiments are running at the Large Hadron
Collider (LHC) at CERN (the European Organization for Nuclear Research), Geneva, which be-
gan operating in 2009 after about 20 years of design and construction, and which will continue
operating for at least the next 10 years.

The Higgs boson has many different processes through which it can decay. When it decays, it
produces other particles. In physics, a decay into specific particles is called a channel. The Higgs
boson has been seen first in three distinct decay channels which are all boson pairs. One of the
next important topics is to seek evidence on the decay into fermion pairs, namely tau-leptons or
b-quarks, and to precisely measure their characteristics. The first evidence of the H to tau tau
channel was recently reported by the ATLAS experiment [3], which, in the rest of this paper, will
be referred to as ”the reference document”. The subject of the Challenge is to try and improve on
this analysis.

1.1 The detector and the analysis pipeline

In the LHC, proton bunches are accelerated on a circular trajectory in both directions. When
these bunches cross in the ATLAS detector, some of the protons collide, producing hundreds of
millions of proton-proton collisions per second. The up to hundreds of particles resulting from
each bunch crossing (called an event) are detected by sensors, producing a sparse vector of about
a hundred thousand dimensions (roughly corresponding to an image or speech signal in classical
machine learning applications). From this raw data, the type, the energy, and the 3D direction
of each particle are estimated. In the last step of this feature construction phase, this variable-
length list of four-tuples is digested into a fixed-length vector of features containing up to tens of
real-valued variables.

Some of these variables are first used in a real-time multi-stage cascade classifier (called the
trigger) to discard most of the uninteresting events (called the background). The selected events
(roughly four hundred per second) are then written on disks by a large CPU farm, producing
petabytes of data per year. The saved events still, in large majority, represent known processes
(called background): they are mostly produced by the decay of particles which are exotic in ev-
eryday terms, but known, having been discovered in previous generations of experiments. The
goal of the offline analysis is to find a (not necessarily connected) region in the feature space in
which there is a significant excess of events (called signal) compared to what known background
processes can explain. Once the region has been fixed, a statistical (counting) test is applied to
determine the significance of the excess. If the probability that the excess has been produced by
background processes falls below a limit,1 the new particle is deemed to be discovered.2

Today, multivariate classification techniques are routinely used to optimize the selection re-
gion [3, 4, 5]. The formal objective function is unique and quite different from the classification
error or other (e.g., ranking, cost-sensitive classification) objectives used regularly in machine
learning. Nevertheless, finding a “pure” signal region corresponds roughly to separating back-
ground and signal events, and so classical classification methods proved to be useful in the past,
often allowing better discovery sensitivity, compared to more traditional, manual (“cut-based”)
techniques.

1 Usually p = 2.87 × 10−7 or its equivalent Gaussian significance Z = Φ−1(1 − p) = 5 sigma, where Φ−1 is the
standard normal quantile.

2The real analysis is somewhat more complex since it has to deal with nuisance parameters and unknown properties
of the new particle (such as its mass). In this note, and in the Challenge, we assume that these parameters are fixed, so
the goal is to test the background only hypothesis against background plus signal with fixed and known parameters.
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The classifier is trained on simulated background and signal events. Simulators produce
weights for each event to correct for the mismatch between the natural (prior) probability of the
event and the instrumental probability applied by the simulator (an importance-sampling fla-
vor). The weights are normalized such that in any region the sum of the weights of events falling
in the region gives an unbiased estimate of the expected number of events found there for a fixed
integrated luminosity, which corresponds to a fixed data taking time for a given beam intensity.
In our case this corresponds to the data collected by the ATLAS Experiment in 2012. Since the
probability of a signal event is usually several orders of magnitudes lower than the probability
of a background event, the signal and background samples are usually re-normalized to produce
a balanced classification problem. A real-valued discriminant function is then trained on this re-
weighted sample to minimize the weighted classification error. The signal region is then defined
by cutting the discriminant value at a certain threshold, which is optimized on a held-out set to
maximize the sensitivity of the statistical test.

1.2 The goal of the Challenge

The goal of the Challenge is to improve the procedure that produces the selection region. We
provide a training set with signal/background labels and with weights, a test set (without labels
and weights), and a formal objective representing an approximation of the median significance
(AMS) of the counting test. The objective is a function of the weights of selected events. We
expect that significant improvements are possible by re-visiting some of the ad hoc choices in the
standard procedure, or by incorporating the objective function or a surrogate into the classifier
design.

1.3 The structure of the document

The paper is written for a mixed audience, so we make it clear who the target is of each sec-
tion. Section 2 describes the problem formally and gives just enough details for understanding
the Challenge. Those who wish to participate in the Challenge (both from the physics and the
machine learning side) without bothering with the reasoning behind the objective function and
the science case can skip the rest of the paper. Section 3 summarizes the physics behind the
Challenge, including a more thorough description of the detector and the analysis pipeline (sum-
marized in Section 1.1) and a detailed description of the data and the features. This section is
essentially written for non-physicists interested in some of the details of the physics behind the
Challenge. Section 4 shows the derivation of the AMS objective used to evaluate the Challenge
submissions. The section is based on standard statistics and it is designed both for physicists and
computer scientists who are interested in the origins of the formula. Some of the discussion in
this section can serve as a basis for designing surrogates which could be incorporated into the
algorithmic design.

2 The formal problem

For the formal description of the Challenge, letD =
{
(x1, y1, w1), . . . , (xn, yn, wn)

}
be the training

sample, where xi ∈ Rd is a d-dimensional feature vector, yi ∈ {b, s} is the label, and wi ∈ R+

is a non-negative weight. Let S = {i : yi = s} and B = {i : yi = b} be the index sets of signal
and background events, respectively, and let ns = |S| and nb = |B| be the numbers of simulated
signal and background events.

There are two properties that make our simulated training set different from those collected
in nature or sampled in a natural way from a joint distribution p(x, y).3 First, we can simulate
as many events as we need (given enough computational resources), so the proportion ns/nb of
the number of points in the two classes does not have to reflect the proportion of the prior class

3We use small p for denoting probability densities and capital P for denoting the probability of random events.
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probabilities P(y = s)/P(y = b). This is actually a good thing: since P(y = s) � P(y = b), the
training sample would be very unbalanced if the numbers of signal and background events, ns
and nb, were proportional to the prior class probabilities P(y = s) and P(y = b). Second, our
simulators produce importance-weighted events. Since the objective function (7) will depend on
the unnormalized sum of weights, to make the setup invariant to the numbers of simulated events
ns and nb, the sum across each set (training, public test, private test, etc.) and each class (signal
and background) will be kept fixed, that is,

∑
i∈S

wi = Ns and ∑
i∈B

wi = Nb. (1)

The normalization constants Ns and Nb have physical meanings: they are the expected total number
of signal and background events, respectively, during the time interval of data taking (the year
of 2012 in our case). The individual weights are proportional to the conditional densities divided
by the instrumental densities used by the simulator, that is,

wi ∼
{

ps(xi)/qs(xi), if yi = s,
pb(xi)/qb(xi), if yi = b,

(2)

where
ps(xi) = p(xi|y = s) and pb(xi) = p(xi|y = b)

are the conditional signal and background densities, respectively, and qs(xi) and qb(xi) are in-
strumental densities.

Let g : Rd → {b, s} be an arbitrary classifier. Let the selection region G = {x : g(x) = s} be
the set of points classified as signal, and let Ĝ denote the index set of points that g selects (physics
terminology) or classifies as signal (machine learning terminology), that is,

Ĝ = {i : xi ∈ G} =
{

i : g(xi) = s
}

.

Then from Eqs. (1) and (2) it follows that the quantity

s = ∑
i∈S∩Ĝ

wi (3)

is an unbiased estimator of the expected number of signal events selected by g,

µs = Ns

∫
G

ps(x)dx, (4)

and, similarly,
b = ∑

i∈B∩Ĝ
wi (5)

is an unbiased estimator of the expected number of background events selected by g,

µb = Nb

∫
G

pb(x)dx. (6)

In physics, the estimated number of events s and b selected by g are also usually called signal
and background.4 In machine learning terminology, s and b are true and false positive rates,
respectively.5

4In particle physics, depending on the context, the term signal can mean s, µs, or s. In this note, since we need all of
these three quantities, we use roman s to denote the label and in indices of terms related to signal (e.g., ns), µs (4) for the
expected number of signal events in a subspace selected by a classifier, and s (3) for the estimated number of signal events
selected by a classifier. The same logic applies to the three terms b, µb (6), and b (5), all usually referred to as background.

5s and b are unnormalized, more precisely, luminosity-normalized (1) true and false positive rates.
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Given a classifier g, a realization of the experiment with n observed events selected by g
(positives), the (Gaussian) significance of discovery would be roughly (n − µb)/

√
µb standard

deviations (sigma)6 since the Poisson fluctuation of the background has a standard deviation of√
µb. Since we can estimate n by s + b and µb by b, this would suggest an objective function of

s/
√

b for training g. Indeed, the first order behavior of all objective functions is ∼ s/
√

b, but it
is only valid when s � b and b � 1, which is often not the case in practice. To improve the
behavior of the objective function in this range, we use the approximate median significance (AMS)
objective function defined by

AMS =

√
2
(
(s + b + breg) ln

(
1 +

s
b + breg

)
− s
)

(7)

where s and b are defined in Eqs. (3) and (5), respectively, and breg is a regularization term set to a
constant breg = 10 in the Challenge. Eq. (7) with breg = 0, coming from [6], is used frequently by
high-energy physicists for optimizing the selection region for discovery significance; the regular-
ization term breg was introduced for the Challenge in order to reduce the variance of the AMS.
The derivation of the AMS formula is explained in Section 4.

As a summary, the task of the participants is to train a classifier g based on the training data
D with the goal of maximizing the AMS (7) on a held-out (test) data set.

3 Physics background

This section elaborates on some of the details on the detector and the analysis left out of Sec-
tion 1.1. Understanding these details is not necessary to participate in the Challenge, but it can
provide some background and show to the participants where their contributions may fit into
the analysis chain. For further information, we refer the reader to the 21 December 2012 spe-
cial edition of Science Magazine “Breakthrough of the Year : the Higgs Boson”7, in particular, a
non-specialist account of the discovery of the Higgs boson [7].

3.1 Proton collisions and detection

The LHC collides bunches of protons every 50 nanoseconds within each of its four experiments,
each crossing producing a random number of proton-proton collisions (with a Poisson expecta-
tion between 10 and 35, depending on the LHC parameters) called events8. Two colliding protons
produce a small firework in which part of the kinetic energy of the protons is converted into new
particles. Most of the resulting particles are very unstable and decay quickly into a cascade of
lighter particles. The ATLAS detector measures three properties of these surviving particles (the
so-called final state): the type of the particle (electron, photon, muon, etc.), its energy, and the 3D
direction of the particle. Based on these properties, the properties of the decayed parent particle
is inferred, and the inference chain is continued until reaching the heaviest primary particles.

An online trigger system discards most of the bunch collisions containing uninteresting events.
The trigger is a three-stage cascade classifier which decreases the event rate from 20 000 000 to
about 400 per second. The selected 400 events are saved on disk, producing about one billion
events and three petabytes of raw data per year.

Each event contains about ten particles of interest in the final state, which are reconstructed
from hundreds of low-level signals. The different types of particles or pseudo particles of interest
for the Challenge are electrons, muons, hadronic tau, jets, and missing transverse energy. Elec-
trons, muons, and taus are the three leptons9 from the standard model. Electrons and muons live

6See footnote 1 and Section 4.
7http://www.sciencemag.org/content/338/6114.toc
8Numbers here and later refer specifically to data taken in the year of 2012 in ATLAS. Simulated data provided for the

Challenge also corresponds to this period.
9For the list of elementary particles and their families, we refer the reader to http://www.sciencemag.org/

content/338/6114/1558.full.
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Figure 1: ATLAS reference frame

long enough to reach the detector, so their properties (energy and direction) can be measured
directly. Taus, on the other hand, decay almost immediately after their creation into either an
electron and two neutrinos, a muon and two neutrinos, or a bunch of charged particles and a
neutrino. The bunch of hadrons can be identified as a pseudo particle called the hadronic tau.
Jets are pseudo particles rather than real particles; they originate from a high energy quark or
gluon, and they appear in the detector as a collimated energy deposit associated with charged
tracks. The measured momenta (see Appendix A for a short introduction to special relativity) of
all the particles of the event is the primary information provided for the Challenge.

We will use the conventional 3D direct reference frame of ATLAS throughout the document
(see Fig 1): the z axis points along the horizontal beam line, and the x and y axes are in the
transverse plane with the y axis pointing towards the top of the detector. θ is the polar angle and
φ is the azimuthal angle. Transverse quantities are quantities projected on the x − y plane, or,
equivalently, quantities for which the z component is omitted. Instead of the polar angle θ, we
often use the pseudorapidity η = −ln tan(θ/2); η = 0 corresponds to a particle in the x− y plane
(θ = π/2), η = +∞ corresponds to a particle traveling along the z-axis (θ = 0) direction and
η = −∞ to the opposite direction (θ = π). Particles can be identified in the range η ∈ [−2.5, 2.5].
For |η| ∈ [2.5, 5], their momentum is still measured but they cannot be identified. Particles with
|η| beyond 5 escape detection along the beam pipe. The missing transverse energy is a pseudo-
particle which deserves a more detailed explanation. The neutrinos produced in the decay of
a tau escape detection completely. We can nevertheless infer their properties using the law of
momentum conservation by computing the vectorial sum of the momenta of all the measured
particles and subtracting it from the zero vector. In practice, there are measurement errors for
all particles which make the sum poorly estimated. Another difficulty is that many particles are
lost in the beam pipe along the z axis, so the information on momentum balance is lost in the
direction of the z axis. Thus we can carry out the summation only in the transverse plane, hence
the name missing transverse energy, which is a 2D vector in the transverse plane.

To summarize, for each event, we produce a list of momenta for zero or more particles for each
type, plus the missing transverse energy which can always be measured. For the Challenge, we
selected only events with one electron or one muon (exclusively), and one hadronic tau. These
two particles should be of opposite electric charge. In addition, events with identified b-quark
jets were rejected, which helps to reject some of the background sources10.

3.2 The physics goal

In the Challenge, the positive (signal) class is comprised of events in which the Higgs boson de-
cays into two taus. This channel is interesting from a theoretical point of view but experimentally
challenging. In the Standard Model (SM), the Higgs boson is the particle which is responsible for
the mass of the other elementary particles. To verify the Standard Model, it is important to mea-

10These two pieces of information are only useful when comparing the Challenge to the reference document.
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sure the coupling (which can be seen as the strength of the force) of the Higgs boson to other
particles and check their consistency with the prediction of the SM. In the original discovery, the
Higgs boson was seen decaying into γγ, WW, and ZZ, which are all boson pairs [1, 2] (bosons
are carriers of forces). What about the couplings to fermions, of which matter is made? We know
indirectly that the coupling of the Higgs boson to quarks (which are fermions) cannot be very
different from what the SM predicts, otherwise the Higgs production cross section (the number
of Higgs bosons produced independently of the way it decays) would be significantly different
of what has been measured. On the other hand, currently we have little direct information on the
coupling of the Higgs boson to leptons (electrons, muons, taus, and their associated neutrinos).
For example, given the elusive nature of neutrinos, their minuscule mass, and the way they oscil-
late between flavors, one could very well imagine that the mass of leptons comes from an entirely
different mechanism. Hence the importance of measuring as precisely as possible the coupling
of the Higgs to tau (given that the coupling of the Higgs to electrons and muons is beyond the
reach of the ATLAS experiment due to the small masses of these two leptons).

The channel of Higgs decaying into two taus is experimentally challenging for essentially two
reasons. First, since neutrinos are not measured in the detector, their presence in the final state
makes it difficult to evaluate the mass of the Higgs candidate on an event-by-event basis. Second,
the Z boson can also decay in two taus, and this happens much more frequently than the decay
of the Higgs. Since the mass of a Z (91 GeV) is not very far (within about one standard deviation
of the resolution of the mass measurement) from the mass of the Higgs (125 GeV), the two decays
produce similar events which are difficult to separate.

We are focusing on one particular topology among the many possible ones: events where one
tau decays into an electron or a muon and two neutrinos, and the other tau decays in hadrons and
a neutrino. We first extract a fixed number of features (described in Section 3.3 and Appendix B)
from the variable-length list of 4-tuples. Then a classifier (trained on simulated events) is used
to select a signal-rich region in the feature space. Once the region is fixed, we check whether
the number of real events in the selected region is significantly higher than the number of back-
ground events predicted by the model, and if the significance is higher than five sigma, the new
particle is declared discovered.

The approximate median significance AMS (7) provides a way to evaluate the quality of the
classifier rapidly. However, it should be noted that in the final analysis presented in the reference
document [3], the evaluation of the significance (and even the determination of the expected
significance based on simulations) involves a complex fit of many parameters, taking into account
various factors and systematic uncertainties.

3.3 The data

For the Challenge, we provide simulated events using the official ATLAS full detector simulator.
The simulator has two parts. In the first, random proton-proton collisions are simulated based on
all the knowledge that we have accumulated on particle physics. It reproduces the random mi-
croscopic explosions resulting from the proton-proton collisions. In the second part, the resulting
particles are tracked through a virtual model of the detector. The process yields simulated events
with properties that mimic the statistical properties of the real events with additional information
on what has happened during the collision, before particles are measured in the detector.

The signal sample contains events in which Higgs bosons (with fixed mass 125 GeV) were
produced. The background sample was generated by other known processes which can produce
events with at least one electron or muon and a hadronic tau, mimicking the signal. For the sake
of simplicity, only three background processes were retained for the Challenge. The first comes
from the decay of the Z boson (with mass 91.2 GeV) in two taus. This decay produces events
with a topology very similar to that produced by the decay of a Higgs. The second set contains
events with a pair of top quarks, which can have lepton and hadronic tau among their decay. The
third set involves the decay of the W boson, where one electron or muon and a hadronic tau can
appear simultaneously only through imperfections of the particle identification procedure.
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Due to the complexity of the simulation process, each simulated event has a weight (2) which
is proportional to the conditional density divided by the instrumental density used by the sim-
ulator (an importance-sampling flavor), and normalized for integrated luminosity such that, in
any region, the sum of the weights of events falling in the region is an unbiased estimate of the
expected number of events falling in the same region during a given fixed time interval. In our
case, the weights correspond to the quantity of real data taken during the year 2012. The weights
are an artifact of the way the simulation works and so they are not part of the input to the clas-
sifier. They will be provided in the training set so the AMS (7) can be properly evaluated. We
do not provide it in the qualifying set since the weight distribution of the signal and background
sets are very different and so they would give away the label immediately.

The d = 30 features extracted from the raw date are described in Appendix B after a crash
course in special relativity in Appendix A, needed for the formal definition of the features.

4 The statistical model

In this section we describe the basic structure of the statistical test that leads to the criterion (7)
presented in Section 2. The goal is to construct a statistical test of the hypothesis that the signal
process is absent. The derivation is based on [6].

In Section 4.1 we describe the statistical test and the discovery significance computed on real
data. In Section 4.2 we derive the approximate median significance that can be used to estimate11

the significance on simulated events and to optimize the statistical test, and we explain why we
apply a regularization term for not letting b approach zero.

It is not possible to reproduce all of the complexities of the search for the signal process in the
Challenge. In particular, some simplifying assumptions are made concerning the treatment of
uncertainties in the estimated rates of background processes. Furthermore, the search is carried
out by counting the number of events found satisfying certain criteria; one may extend this to
multiple counts with different criteria or to use of a more sophisticated likelihood-ratio test. The
simplifying assumptions used here preserve the main features of a more complicated analysis
and are expected to have only a minor influence on its sensitivity and on the broader question of
how machine learning can be used to improve the search.

4.1 Statistical treatment of the measurement

Each proton-proton collision (“event”) is characterized by a set of measured quantities, the input
variables x ∈ Rd. A simple but realistic type of analysis is where one counts the number of events
found in a given region in the space of input variables (the “search region”, denoted below as G),
which is defined by the classifier g, that is, G = {x : g(x) = s}. If we fix the classifier g, the
number of events n found in G is assumed to follow a Poisson distribution with mean µs + µb,

P(n|µs, µb) =
(µs + µb)

n

n!
e−(µs+µb), (8)

where µs and µb are the expected numbers of events from the signal and background, respec-
tively. To establish the existence of the signal process, we test the hypothesis of µs = 0 (the
background-only hypothesis) against the alternative where the signal exists, that is, µs > 0. From
Eq. (8), we construct the likelihood ratio

λ =
P(n|0, µb)

P(n|µ̂s, µb)
=

(
µb

µ̂s + µb

)n
eµ̂s =

(µb
n

)n
en−µb , (9)

where µ̂s = n− µb is the maximum likelihood estimator of µs given that we observe n events in
the selection region G.

11Since the training data is not coming from real observations, rather it is generated by simulators, it may be more
appropriate to use the term approximate, as in approximating an integral by Monte-Carlo integration. We stick to the term
estimate to comply with the classical terminology in machine learning.
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According to Wilks’ theorem [8], given that certain regularity conditions are satisfied, the test
statistic

q0 =

{
−2 ln λ if n > µb,
0 otherwise

(10)

approaches a simple asymptotic form related to the chi-squared distribution in the large-sample
limit. In practice the asymptotic formulae are found to provide a useful approximation even for
moderate data samples (see, e.g., [6]). Assuming that these hold, the p-value of the background-
only hypothesis from an observed value of q0 is found to be

p = 1−Φ (
√

q0) , (11)

where Φ is the standard Gaussian cumulative distribution.
In particle physics it is customary to convert the p-value into the equivalent significance Z,

defined as
Z = Φ−1(1− p), (12)

where Φ−1 is the standard normal quantile. Eqs. (11) and (12) lead therefore to the simple result

Z =
√

q0 =

√
2
(

n ln
(

n
µb

)
− n + µb

)
(13)

if n > µb and Z = 0 otherwise. The quantity Z measures the statistical significance in units
of standard deviations or “sigmas”. Often in particle physics a significance of at least Z = 5 (a
five-sigma effect) is regarded as sufficient to claim a discovery. This corresponds to finding the
p-value less than 2.9× 10−7.12

4.2 The median discovery significance

Eq. (13) represents the significance that we would obtain for a given number of events n observed
in the search region G, knowing the background expectation µb. When optimizing the design of
the classifier g which defines the search region G = {x : g(x) = s}, we do not know n and µb. As
usual in empirical risk minimization [9], we estimate the expectation µb by its empirical counter-
part b from Eq. (5). We then replace n by s + b to obtain the approximate median significance

AMS2 =

√
2
(
(s + b) ln

(
1 +

s
b

)
− s
)

. (14)

Taking into consideration that (x + 1) ln(x + 1) = x + x2/2 +O(x3), AMS2 can be rewritten as

AMS2 = AMS3 ×

√
1 +O

(( s
b

)3
)

,

where
AMS3 =

s√
b

. (15)

The two criteria Eqs. (14) and (15) are practically indistinguishable when b� s. This approxima-
tion often holds in practice and may, depending on the chosen search region, be a valid surrogate
in the Challenge.

In preliminary runs it happened sometimes that AMS2 was maximized in small selection
regions G, resulting in a large variance of the AMS. While large variance in the real analysis is
not necessarily a problem, it would make it difficult to reliably compare the participants of the
Challenge if the optimal region was small. So, in order to decrease the variance of the AMS, we
decided to bias the optimal selection region towards larger regions by adding and artificial shift
breg to b. The value breg = 10 was determined using preliminary experiments.

12This extremely high threshold for statistical significance is motivated by a number of factors related to multiple
testing, accounting for mismodeling and the high standard one would like to require for an important discovery.
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5 Conclusion

In this note we provided background information for the Higgs boson machine learning chal-
lenge. All information for effectively participating in the Challenge is provided by the website
mentioned in the preamble; pointers to additional resources are also available there. Any remain-
ing questions should be asked on the forum hosted on the same web site.
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A Special relativity

This appendix gives the very minimal introduction to special relativity for a better understanding
of how the Higgs boson search is performed, and what the extracted features mean.

A.1 Momentum, mass, and energy

A fundamental equation of special relativity defines the so-called 4-momentum of a particle,

E2 = p2c2 + m2c4, (16)

where E is the energy of the particle, p is its momentum, m is the rest mass, and c is the speed of
light. When the particle is at rest, its momentum is zero, and so Einstein’s well-known equiva-
lence between mass and energy, E = mc2, applies. In particle physics, we usually use the follow-
ing units: GeV for energy, GeV/c for momentum, and GeV/c2 for mass. 1 GeV (109 electron-Volt)
is one billion times the energy acquired by an electron accelerated by a field of 1 V over 1 m, and
it is also approximately the energy corresponding to the mass of a proton (more precisely, the
mass of the proton is about 1 GeV/c2). When these units are used, Eq. (16) simplifies to

E2 = p2 + m2. (17)

To avoid the clutter of writing GeV/c for momentum and GeV/c2 for mass, a shorthand of using
GeV for all the three quantities of energy, momentum, and mass is usually adopted in most of
the recent particle physics literature (including papers published by the ATLAS and the CMS
experiments). We also adopt this convention throughout this document.

The momentum is related to the speed v of the particle. For a particle with non-zero mass,
and when the speed of the particle is much smaller than the speed of light c, the momentum
boils down to the classical formula p = mv. In special relativity, when the speed of the particle is
comparable to c, we have p = γmv, where

γ =
1√

1− (v/c)2
.

The relation holds both for the norms v and p and for the three dimensional vectors ~v and ~p, that
is, ~p = γm~v, where, by convention, p = |~p| and v = |~v|. The factor γ diverges to infinity when
v is close to c, and the speed of light cannot be reached nor surpassed. Hence, the momentum
is a concept more frequently used than speed in particle physics. The kinematics of a particle is
fully defined by the momentum and energy, more precisely, by the 4-momentum (px, py, pz, E).
When a particle is identified, it has a well defined mass13, so its energy can be computed from the
momentum and mass using Eq. (17). Conversely, the mass of a particle with known momentum
and energy can be obtained from

m =
√

E2 − p2. (18)

Instead of specifying the momentum coordinate (px, py, pz), the parameters φ, η, and pT =√
p2

x + p2
y, explained in Section 3.1, are often used.

A.2 Invariant mass

The mass of a particle is an intrinsic property of a particle. So for all events with a Higgs boson,
the Higgs boson will have the same mass. To measure the mass of the Higgs boson, we need
the 4-momentum (px, py, pz, E) = (~p, E) of its decay products. Take the simple case of the Higgs
boson H decaying into a final state of two particles A and B which are measured in the detector.

13neglecting the particle width
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By conservation of the energy and momentum (which are fundamental laws of nature), we can
write EH = EA + EB and ~pH = ~pA + ~pB. Since the energies and momenta of A and B are

measured in the detector, we can compute EH and pH = |~pH | and calculate mH =
√

E2
H − p2

H .
This is called the invariant mass because (with a perfect detector) mH remains the same even if EH
and pH differ from event to event. This can be generalized to more than two particles in the final
state and to any number of intermediate states.

In our case, the final state is a lepton, a hadronic tau, and three neutrinos. The lepton and
hadronic tau are measured in the detector, but for the neutrinos, all we have is the transverse
missing energy, which is an estimation of the sum of the momenta of the three neutrinos in the
transverse plane (explained in Section 3). Hence the mass of the ττ can not be measured; we have
to resort to different estimators which are only correlated to the mass of the ττ. For example, the
visible mass which is the invariant mass of the lepton and the hadronic tau, hence deliberately
ignoring the unmeasured neutrinos.

A.3 Other useful formulas

The following formulas are useful to compute derived variables from primitives (in Appendix B).
For tau, lep, leading jet, and subleading jet, the momentum vector can be computed as

~p =

px
py
pz

 =

 pT × cos φ
pT × sin φ

pT × sinh η

 ,

where pT is the transverse momentum, φ is the azimuth angle, η is the pseudo rapidity, and sinh
is the hyperbolic sine function. The modulus of p is

pT × cosh η, (19)

where cosh is the hyperbolic cosine function. The mass of these particles is neglected, so E = p.
The missing transverse energy ~Emiss

T is a two-dimensional vector

~Emiss
T =

(
|~Emiss

T | × cos φT
|~Emiss

T | × sin φT

)
,

where φT is the the azimuth angle of the missing transverse energy.
The invariant mass of two particles is the invariant mass of the 4-momentum sum, that is (still

neglecting the mass of the two particles),

minv(~a,~b) =

√(√
a2

x + a2
y + a2

z +
√

b2
x + b2

y + b2
z

)2
− (ax + bx)2 − (ay + by)2 − (az + bz)2. (20)

The transverse mass of two particles is the invariant mass of the vector sum, the third component
being set to zero, that is (still neglecting the mass of the two particles),

mtr(~a,~b) =

√(√
a2

x + a2
y +

√
b2

x + b2
y

)2
− (ax + bx)2 − (ay + by)2. (21)

The pseudorapidity separation between two particles A and B is

|ηA − ηB|. (22)

The R separation between two particles A and B is√
(ηA − ηB)2 + (φA − φB)2, (23)

where φA − φB is brought back to the [−π,+π[ range.
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B The detailed description of the features

In this section we explain the list of features describing the events.
Prefix-less variables EventId, Weight and Label have a special role and should not be

used as input to the classifier. The variables prefixed with PRI (for PRImitives) are “raw” quan-
tities about the bunch collision as measured by the detector, essentially the momenta of particles.
Variables prefixed with DER (for DERived) are quantities computed from the primitive features.
These quantities were selected by the physicists of ATLAS in the reference document [3] either
to select regions of interest or as features for the Boosted Decision Trees used in this analysis. In
addition:

• Variables are floating point unless specified otherwise.

• All azimuthal φ angles are in radian in the [−π,+π[ range.

• Energy, mass, momentum are all in GeV

• All other variables are unit less.

• Variables are indicated as “may be undefined” when it can happen that they are meaning-
less or cannot be computed; in this case, their value is −999.0, which is outside the normal
range of all variables.

• The mass of particles has not been provided, as it can safely be neglected for the Challenge.

EventId An unique integer identifier of the event. Not to be used as a feature.

DER mass MMC The estimated mass mH of the Higgs boson candidate, obtained through a prob-
abilistic phase space integration (may be undefined if the topology of the event is too far
from the expected topology)

DER mass transverse met lep The transverse mass (21) between the missing transverse en-
ergy and the lepton.

DER mass vis The invariant mass (20) of the hadronic tau and the lepton.

DER pt h The modulus (19) of the vector sum of the transverse momentum of the hadronic tau,
the lepton, and the missing transverse energy vector.

DER deltaeta jet jet The absolute value of the pseudorapidity separation (22) between the
two jets (undefined if PRI jet num ≤ 1).

DER mass jet jet The invariant mass (20) of the two jets (undefined if PRI jet num ≤ 1).

DER prodeta jet jet The product of the pseudorapidities of the two jets (undefined if PRI jet num ≤
1).

DER deltar tau lep The R separation (23) between the hadronic tau and the lepton.

DER pt tot The modulus (19) of the vector sum of the missing transverse momenta and the
transverse momenta of the hadronic tau, the lepton, the leading jet (if PRI jet num ≥ 1)
and the subleading jet (if PRI jet num = 2) (but not of any additional jets).

DER sum pt The sum of the moduli (19) of the transverse momenta of the hadronic tau, the
lepton, the leading jet (if PRI jet num ≥ 1) and the subleading jet (if PRI jet num = 2)
and the other jets (if PRI jet num = 3).

DER pt ratio lep tau The ratio of the transverse momenta of the lepton and the hadronic
tau.
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DER met phi centrality The centrality of the azimuthal angle of the missing transverse en-
ergy vector w.r.t. the hadronic tau and the lepton

C =
A + B√
A2 + B2

,

where A = sin(φmet − φlep), B = sin(φhad − φmet), and φmet, φlep, and φhad are the az-
imuthal angles of the missing transverse energy vector, the lepton, and the hadronic tau,
respectively. The centrality is

√
2 if the missing transverse energy vector ~Emiss

T is on the
bisector of the transverse momenta of the lepton and the hadronic tau. It decreases to 1 if
~Emiss

T is collinear with one of these vectors and it decreases further to −
√

2 when ~Emiss
T is

exactly opposite to the bisector.

DER lep eta centrality The centrality of the pseudorapidity of the lepton w.r.t. the two jets
(undefined if PRI jet num ≤ 1)

exp

[
−4

(η1 − η2)2

(
ηlep −

η1 + η2

2

)2
]

,

where ηlep is the pseudorapidity of the lepton and η1 and η2 are the pseudorapidities of the
two jets. The centrality is 1 when the lepton is on the bisector of the two jets, decreases to
1/e when it is collinear to one of the jets, and decreases further to zero at infinity.

PRI tau pt The transverse momentum
√

p2
x + p2

y of the hadronic tau.

PRI tau eta The pseudorapidity η of the hadronic tau.

PRI tau phi The azimuth angle φ of the hadronic tau.

PRI lep pt The transverse momentum
√

p2
x + p2

y of the lepton (electron or muon).

PRI lep eta The pseudorapidity η of the lepton.

PRI lep phi The azimuth angle φ of the lepton.

PRI met The missing transverse energy ~Emiss
T .

PRI met phi The azimuth angle φ of the missing transverse energy.

PRI met sumet The total transverse energy in the detector.

PRI jet num The number of jets (integer with value of 0, 1, 2 or 3; possible larger values have
been capped at 3).

PRI jet leading pt The transverse momentum
√

p2
x + p2

y of the leading jet, that is the jet with
largest transverse momentum (undefined if PRI jet num = 0).

PRI jet leading eta The pseudorapidity η of the leading jet (undefined if PRI jet num =
0).

PRI jet leading phi The azimuth angle φ of the leading jet (undefined if PRI jet num = 0).

PRI jet subleading pt The transverse momentum
√

p2
x + p2

y of the leading jet, that is, the
jet with second largest transverse momentum (undefined if PRI jet num ≤ 1).

PRI jet subleading eta The pseudorapidity η of the subleading jet (undefined if PRI jet num ≤
1).
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PRI jet subleading phi The azimuth angle φ of the subleading jet (undefined if PRI jet num ≤
1).

PRI jet all pt The scalar sum of the transverse momentum of all the jets of the events.

Weight The event weight wi, explained in Section 3.3. Not to be used as a feature. Not available
in the test sample.

Label The event label (string) yi ∈ {s, b} (s for signal, b for background). Not to be used as a
feature. Not available in the test sample.

The events (instances) and the features were used for the training and optimization of the
reference ATLAS analysis [3]. However, both the feature list and the events have been simplified
for the Challenge in the following way.

• The top sample normally has events with negative weights. These have been removed.

• Only major background sources are included.

• The normalization of the signal and backgrounds (captured in weight) is slightly altered,
because correction factors used in the reference analysis [3] have not been applied.

• In the reference analysis [3], manipulated data events are used eventually to evaluate the
different backgrounds.

These simplifications allowed us to provide a large sample for possible sophisticated separa-
tion algorithms and to provide a relatively simple optimization criterion, while preserving the
complexity of the original classification problem. The reference ATLAS analysis can be repro-
duced reasonably closely (although not exactly) with the provided data.
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